- The Genetic Engineering Approvals Committee (GEAC) was set up in May 1990 under the Environment (Protection) Act, 1986. While it is a statutory body under Rules 1989 of the Environment (Protection) Act, 1986 and as such it is authorised to grant approval for large-scale trials and environmental release of genetically modified organisms, on the issue of Bt-brinjal the GEAC in its 97th meeting held on October 14th, 2009 observed that:
- The GEAC, being located in the Ministry of Environment and Forests, sent its recommendations to me. After receiving the recommendations of the GEAC on Bt-brinjal, I communicated the following to the GEAC on October 16th, 2009:
- Between January 13th, 2010 and February 6th, 2010 public meetings on Bt-brinjal were organised by the Center for Environment Education (CEE), Ahmedabad (a Centre of Excellence supported by the MoE&F) in Kolkata, Bhubaneshwar, Ahmedabad, Nagpur, Chandigarh, Hyderabad and Bangalore. Kolkata and Bhubaneshwar were selected because West Bengal and Orissa account for 30% and 20% of India’s brinjal production respectively. Ahmedabad and Nagpur were selected because Bt-cotton has been under extensive cultivation in Gujarat and Maharashtra over the past six years. Chandigarh was selected in order to allow farmers from the two agriculturally-advanced states of Punjab and Haryana to express their views. Hyderabad and Bangalore were selected because these are centres for biotechnology R&D. Almost 8000 people from different sections of society participated enthusiastically in these seven public meetings. Those who attended were farmers and farmer organisations, scientists, state agriculture department officials, NGOs, consumer groups, allopathic and ayurvedic doctors, students and housewives. A summary report prepared by the CEE based on these seven meetings is at Annex-I to the electronic version of this note available at www.moef.nic.in and video-recordings of each of these interactions will also be available very soon on the same website.[1]
- Letters were sent to the chief ministers of West Bengal, Orissa, Bihar, Maharashtra, Andhra Pradesh and Karnataka since these are the major brinjal cultivating states accounting for 30%, 20%, 11%,6%, 6% and 4% respectively of India’s brinjal production. Copies of these letters to the CMs and the responses I received from them are at Annex-II to the electronic version of this note available at www.moef.nic.in that also contains letters received from the state governments of Kerala, Madhya Pradesh and Chattisgarh. A letter received from the Chairman of the Committee on Agriculture of the Lok Sabha and other political leaders, including a former Prime Minister of India is also included in this Annex.
- Opinions were also sought from a number of scientists both from India and abroad. These opinions are at Annex-III to the electronic version of this note at www.moef.nic.in.
- In addition, a very large number of emails from research institutes, NGOs and concerned individuals were received. A representative sample is at Annex-IV to the electronic version of this note available at www.moef.nic.in.
- I should like to make clear at the very outset that my concern is with Bt-brinjal alone[2] and not with the larger issue of genetic engineering and biotechnology in agriculture. The issue before me is limited to what to do with the GEAC recommendation on the commercialisation of Bt-brinjal.
- All states which have written to me have expressed apprehension on Bt-brinjal and have called for extreme caution. Because this is extremely important in our federal framework and agriculture is a state subject, I summarise below the views of the state governments that have been submitted in writing to me by the Chief Ministers/Agriculture Ministers:
- Clearly, Bt-technology is not the only route for reducing pesticide use. That pesticide use can have deleterious public health impacts is already visible in places like Bhatinda which, as the Chief Minister of Punjab himself told me a couple of days back, has emerged as a major cancer-afflicted region. How to reduce pesticide use without compromising on food security at the macro-level and returns to farmers at the micro-level is an urgent public policy in our agriculture. In this connection, it is worth recalling that there are now close to 6 lakh farmers in Andhra Pradesh fully practicing NPM (non-pesticide management) agriculture over an area of about 20 lakh acres. I have myself been seeing this initiative over the past four years. The advantage of NPM is that it eliminates chemical pesticide use completely whereas Bt-technology only reduces the pesticide spray, albeit substantially. Incidentally, one of the eight missions under the National Action Plan on Climate Change is the National Mission on Sustainable Agriculture of which NPM is an integral part. On January 19th 2009 much before I became Minister for Environment and Forests, I had written to the Union Agriculture Minister on the need to evaluate the Andhra NPM experiment from the point of view of replicability on a larger scale.
- The issue of safety tests has been raised repeatedly by critics of Bt-brinjal. The plant family Solanaceae to which brinjal belongs appears to be more problematic than others because it contains several natural toxins that can resurface when metabolism is disturbed. The kind of testing done, it is being said, is not specific or stringent enough to detect toxins. This is an important issue since brinjal is an item of almost daily consumption for most of us. While there may be a debate on the nature and number of tests that need to be carried out for establishing human safety, it is incontrovertible that the tests have been carried out by the Bt-brinjal developers themselves and not in any independent laboratory. This does raise legitimate doubts on the reliability of the tests, doubts that I cannot ignore. The fact that brinjal is very largely a cross-pollinated crop[3] according to the generally accepted scientific consensus makes the threat of contamination with the use of Bt-brinjal on other varieties a particularly worrisome issue.
- Very serious fears have been raised in many quarters on the possibility of Monsanto controlling our food chain if Bt-brinjal is approved[4]. Indeed it would not be an exaggeration to say that public concerns about Bt-brinjal have been influenced very heavily by perceptions of Monsanto itself. I have no bias whatsoever. Monsanto has made substantial investments in India, including in R&D. Many Indian-origin scientists work in Monsanto. As a country, we must learn to derive full benefit of Monsanto’s expertise and capabilities, without jeopardising national sovereignty and also develop countervailing power to it. Unfortunately, we do not seem to have a large-scale publicly-funded biotechnology effort in agriculture. Had there been one, there would have been competition to Monsanto. It is true that Mahyco an Indian company is involved in the development of hybrid Bt-brinjal. But 26% of Mahyco is owned by Monsanto itself. It is also true that two government-owned agricultural universities—Tamil Nadu Agricultural University, Coimbatore and the University of Agricultural Sciences, Dharwad—have developed Bt-brinjal varieties. [5]. But doubts have been raised on how Bt-related research in these two institutions has been funded. Further, the Material Transfer Agreement between TNAU and Monsanto in March 2005 has raised worrisome questions on ownership (both of products and germplasm) and what TNAU can do and cannot do.[6]
- Apart from being the world’s largest producer of brinjal, India is undoubtedly the country of origin as far as brinjal is concerned as testified by Vavilov in 1928. Data that has been made available to me by the National Bureau of Plant Genetic Resources of the ICAR reveals that there are 3951 collections in the Bureau and the number of diversity-rich districts is 134. The Bureau also points out that diversity-rich regions are likely to be affected by the introduction of Bt-brinjal due to gene flow. The loss of diversity argument cannot be glossed over especially when seen in light of the experience we have had in cotton where Bt-cotton seed has overtaken non-Bt seeds.
- Bt-cotton is not comparable to Bt-brinjal no doubt but it is nevertheless necessary to review our experience with it. Undoubtedly, Bt-cotton has catapulted India into second position in the world as far as cotton production is concerned, up from number three after the new technology took root. Over 90% of cotton farmers in India cultivate Bt-cotton. It is also true that many farmers in the public consultations vociferously expressed their support to Bt-cotton on economic grounds. But a number of farmers also expressed doubts[7]. More than that, the Central Institute of Cotton Research, Nagpur has done a comprehensive review of Bt-cotton in India[8] and this review has thrown up a number of questions. The Director of the Institute (that has produced a Bt-cotton variety—Bikaneri Nerma—whose seeds can be kept by farmers for planting during the next season unlike hybrids where farmers have to be buy seeds every year) while expressing his clear support for Bt-brinjal technology, has said the following based on the Bt-cotton experience:
- A number of doubts have been raised on the integrity of the GEAC process itself, particularly by Dr. P.M. Bhargava, one of India’s most eminent biotechnologists who arguably was amongst the earliest to coin the very term “genetic engineering” and who is a nominee of the Supreme Court on the GEAC. He has provided a detailed point-by-point critique of the Expert Committee-II (EC-II) report that has formed the basis of GEAC’s recommendation to commercialise Bt-brinjal. Dr. Bhargava has claimed that the Chairman of EC-II had agreed with his assessment that eight essential tests had not been conducted by Mahyco. Another fact brought to my attention is that an expert committee set up by the GEAC in 2006 (EC-I) had asked for several tests to be conducted but one-third of the EC-II members who were also members of EC-I chose to discard the need for these studies while evaluating Bt-brinjal as EC-II. I do not propose to do a post-mortem on the way the GEAC has functioned[9]. Many have called for an independent genetic engineering regulator. A National Biotechnology Regulatory Authority has been on the anvil for almost six years now but it has yet to come into being. Such an Authority has to be professional and science-based, independent of the government that should have facilities for conducting all essential tests with integrity and impartiality. In the absence of such a body, arguments that have been made on the limitations of the GEAC cannot be ignored[10]
- Many countries, particularly in Europe, have banned GM foods. I have spoken with my counterpart in China and he has informed me that China’s policy is to encourage research in GM technology but to be extremely cautious when it comes to introduction in food crops. In any case, China’s Bt-cotton is entirely indigenously developed, in marked contrast to the case in India. China has a very strong publicly-funded programme in GM technology unlike India. True, Bt-corn and Bt-soya is widely available in the USA but that is no great compulsion for us to follow suit.
- Some scientists and civil society organisations have pointed out that the GEAC process has violated the Cartagena Protocol on Biosafety to which India is a signatory, particularly the provisions pertaining to public consultations prior to the release of GM food crops and also the broad principles governing risk assessment. It is pertinent to also recall Article 15 of the Rio Declaration on Environment and Development (1992) which echoes the precautionary principle when it states “ where there are threats of irreversible damage, the lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation”. Further, Section 45 of Codex Alimentarius “Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants” says “The location of trial sites should be representative of the range of environmental conditions under which the plant varieties would be expected to be grown. The number of trial sites should be sufficient to allow accurate assessment of compositional characteristics over this range. Similarly, trials should be conducted over a sufficient number of generations to allow adequate exposure to the variety of conditions met in nature. To minimise environmental effects, and to reduce any effect from naturally-occurring genotypic variation within a crop variety, each trial site should be replicated. An adequate number of plants should be sampled and the methods of analysis should be sufficiently sensitive and specific to detect variations in key components.” It does appear that the current standards by which the GEAC has formulated the decision to approve Bt-brinjal do not match these global regulatory norms to which India is a party.
- I have received a number of emails from scientists in the USA, France, Australia, UK and New Zealand raising very serious doubts on Bt-brinjal and also on the way tests have been conducted in India[11]. Amongst them, I should mention communications received from (i) Professor G.E. Seralini from France who in a detailed report has pointed out several flaws in the EC-II report and concludes that “the risk on human and mammalian health is too high for authorities to take the decision to commercialise this GM brinjal”; (ii) Dr. Doug Gurain-Sherman of the Union of Concerned Scientists, Washington DC which says that “the record compiled over a 13-year period shows that the 4% yield enhancement contributed by Bt-corn varieties constitutes only 14% of overall corn yield increase. Further, Dr. Gurain-Sherman highlights serious flaws in the EC-II report on evaluation of gene flow risks from Bt-brinjal; (iii) Professor Allison Snow and Professor Norman Ellstrand of the Ohio State University that identifies several shortcomings in the EC-II report concerning gene flow from Bt-brinjal to wild and weedy relatives; (iv) Dr. Nicholas Storer of Dow AgroSciences (a private US company much like Monsanto) who does say that Bt-brinjal does not pose unreasonable adverse risks to the environment or to human and animal health but who calls for careful implementation of resistance management strategies and points out that Bt-technology should not be seen as a silver bullet to managing lepidopteran pests in brinjal; (v) Dr. Jack Heinemann of the University of Canterbury, New Zealand who questions the consistent yield increases claimed for Bt-cotton and says that the Bt-brinjal tests conducted in India would not meet careful international standards; (vi) Dr. David Andow of the University of Minnesota, USA who says that his reading of the EC-II report is sufficient to lead him to question the adequacy of environmental risk assessment but it is not sufficient for him to conclude that the environmental risk assessment is erroneous; and (vii) Dr. David Schubert of the Salk Institute of Biological Studies, USA who says that Bt-brinjal should definitely not be introduced in India since it poses serious environmental and health risks, will increase social and political dependence on private companies and will entail higher costs at all levels of the food chain; and (viii) Dr. Judy Carman of the Institute of Health and Environmental Research, South Australia who has analysed Mahyco’s biosafety dossier of 2008 in great detail and who says that her doubts and questions have not been answered at all in the EC-II report.
- Some suggestions have been made that we could consider limited release of Bt-brinjal hybrids in limited areas and ensuring that its sale would be monitored through mandatory labelling. The President of the Indian National Science Academy, Dr. M.Vijayan of the Indian Institute of Science, Bangalore and a noted microbiologist himself has made the suggestion of limited release. My view is that while this offers a possible compromise route, it would be extremely difficult to ensure such a “quarantine”. Mandatory labelling is indeed required in countries like the USA but this is somewhat impractical here because our retail market is fundamentally different than that of the USA and also because it is extremely difficult to monitor limited usage in practice[12]. Another scientist Dr. N.S. Talekar, who has worked on the brinjal shoot and fruit borer at the World Vegatable Centre, Taiwan and is now with the Mahatma Phule Krishi Vidyapeeth, while justifying the use of Bt-technology, has strongly warned against the use of Bt-brinjal in its present form saying that the manner in which the proponents of the product are recommending to farmers to use this technology is faulty and unscientific and would lead to disaster.
- Some eminent Indian scientists have written expressing their support for the commercialisation of Bt-brinjal. Prominent among them is Dr. G. Padmanabhan of the Indian Institute of Science, Bangalore who debunks several domestic and international criticisms of Bt-brinjal, makes a strong plea for commercialisation but also makes the point that we need a statutory body with regulatory authority and R&D capabilities to govern all aspects of GM crop cultivation in the country once they are released for commercialisation. Specifically, Dr. Padmanabhan argues that such an autonomous institution should address issues such as: (i) choice of GM crops and traits relevant for commercialisation in the country; (ii) registration of GM crops for a finite period and reassessment of their performance and the ground situation, before extending the registration for another finite period; (iii) inputs for determining the price of GM seeds sold to farmers; (iv) technical help and advice to farmers on a continual basis; (v) positioning of Bt crops with Integrated Pest Management (IPM) strategies and also handling of secondary infections; and (vi) education of the public on the pros and cons of the use of GM technology in agriculture. The agenda sketched out by Dr. Padmanabhan is both ambitious and necessary but will take time to implement in an effective manner. Another eminent scientist who has supported GEAC’s decision to release Bt-brinjal for general cultivation is Dr. Deepak Pental, Vice Chancellor of Delhi University but he has also said that two realities must be understood—one, that as India is centre of origin of cultivated brinjal, transgenes can move to the wild germplasm though this should not unduly alarm us and two, that we will not be able to differentiate between Bt-brinjal and non-Bt-brinjal, making labelling impossible. Dr. Raj Bhatnagar of the International Centre for Genetic Engineering and Biotechnology, New Delhi has sent a highly technical communication which, in simple language, implies that there is no health risk whatsoever by eating Bt-brinjal.
- I have had a discussion with both the Director-General of the Indian Council of Medical Research as well as with the Drug Controller to the Government of India. Both have recommended that chronic toxicity and other associated tests should be carried out independently. The parallel has been drawn with drugs where during the crucial clinical trials phase, independent testing is carried out on human beings instead of relying on just the data generated by the developer companies themselves. The DG-ICMR told me that in the face of contradictory evidence of the health effects he would advocate more caution and further tests. Doctors for Food and Safety, a network of around 100 doctors across the country have sent a representation on the health hazards related to GM foods in general and Bt-brinjal in particular. They have drawn attention to the recommendations made by the American Academy of Environmental Medicine that GM foods have not been properly tested for human consumption and that there are substantial risks associated with the use of GM foods. I have also been informed that the Indian Systems of Medicine including ayurveda, siddha, homeopathy and unani use brinjal as a medicinal ingredient, both in raw and cooked form, for treatment of respiratory diseases and that the entire brinjal plant is used in such preparations. There is fear that Bt-brinjal will destroy these medicinal properties due to loss of synergy, differences in the alkaloids and changes in other active principles. In the opinion of this network of doctors, these factors have not been considered by EC-II.
- The Indian Council for Agricultural Research (ICAR) and the Department of Biotechnology have also given their unqualified support to Bt-brinjal. Some farmers’ organisations like the Bharat Krishak Samaj and Shetkari Sanghatana and farmers’ spokespersons like Bhupinder Singh Mann and Sharad Joshi have come out fully in support of Bt-technology[13] in general and Bt-brinjal in particular on the grounds that we should not be denying modern technology to farmers and that this will improve incomes of farmers. As I have mentioned earlier, many farmers at the public consultations argued that Bt-cotton has been very profitable for them.
- I have stressed the importance of public investment in biotechnology for agriculture. But Indian private investment in this area is already a reality. Mahyco is one example. Between 2007 and 2009, the GM crops approved for field trials by the GEAC include insect-resistant cotton and rice developed by Metahelix Life Sciences, Bangalore and hybrid-rice developed by Avesthagen, Pune, both companies run by a new generation of Indian scientists. Clearly, such science-based companies launched by Indian entrepreneurs need to be encouraged and the regulatory process should not stymie such innovation[14]. Apart from this, even publicly-funded institutions like the Indian Institute of Horticulture Research, Bangalore too need encouragement since I have been informed that trials using a Bt-brinjal variety using the Cry2A Bt gene are at an advanced stage. Scientists at another publicly-funded institution—the Indian Institute of Vegetable Research, Varanasi—have developed Bt-brinjal using Cry1Aaa3 gene in their own cultivar IVBL-9. These public sector products need to be introduced first, if at all, going by the Bt-cotton experience.
- I have had the benefit of extended conversations with Dr. M.S. Swaminathan, MP who is, without doubt, India’s most distinguished and senior-most agricultural scientist who was one of the scientific architects of the Green Revolution. Dr. Swaminathan, whose own research foundation is working on GM technology, has said that we need to be concerned with three issues here: (i) chronic toxicity since brinjal is an element of such frequent consumption in India; (ii) independent tests that command credibility and not depend only on data provided by the developers themselves; and (iii) the need to have an independent regulatory system that will be in a position to study all aspects of GM technology in agriculture and arrive at a measured conclusion. Dr. Swaminathan has also agreed with the view since brinjal itself contains natural toxins, we have to be extra-careful on Bt-technology. In view of his great stature both in India and abroad, I would like to place below his most recent communication to me on this subject in full:
- I am also persuaded that the studies being demanded by responsible civil society groups before release of Bt-brinjal should be conducted as a measure of our sensitivity to public opinion. A couple of scientists and civil society groups have also pointed out (i) things that are problematic with the protocols of the studies already conducted; (ii) things that are problematic with the analysis of the data submitted; (iii) things that are problematic with the interpretation of the results; (iv) things that are problematic with the reporting by Mahyco; (v) things that are problematic with the procedures adopted. It is incumbent upon us as an accountable and transparent administration to respond to these concerns (presented in Annex-IV to the electronic version of this note available at www.moef.nic.in) in a serious manner.
- Based on all the information presented in the preceding paragraphs and when there is no clear consensus within the scientific community itself, when there is so much opposition from the state governments, when responsible civil society organisations and eminent scientists have raised many serious questions that have not been answered satisfactorily, when the public sentiment is negative and when Bt-brinjal will be the very first genetically-modified vegetable to be introduced anywhere in the world and when there is no over-riding urgency to introduce it here,
- This decision should not, however, be construed as discouraging on-going R&D in using tools of modern biotechnology for crop improvement and for strengthening national food and nutrition security, since issues of this kind have to be examined and decided necessarily on a case-by-case basis. I hope the moratorium period will be used to build a broader consensus so that as a country we are able to harness the full potential of GM technology in agriculture in a safe and sustainable manner.
- The moratorium period should also be used to operationalise the independent regulatory body in its entirety as being recommended by many scientists as well as civil society organizations. I also hope in the moratorium period we give serious thought to the strategic importance of the seed industry[15] and how we retain public and farmer control over it even as we encourage private investment in agricultural biotechnology. I would also recommend that the moratorium period be used to have a detailed debate in Parliament and also a comprehensive discussion in the National Development Council (NDC) on this subject.
- I believe the approach outlined above is both responsible to science and responsive to society.In arriving at this decision, I have also kept in mind what the Prime Minister Dr. Manmohan Singh himself had said on this subject in his speech at the Indian Science Congress on January 3rd, 2010 at Thiruvananthapuram:
- I expect the GEAC to take follow-up action on the matter of further studies and tests with appropriate protocols and in appropriate laboratories. I also expect the GEAC to carefully study all the material I have received and am turning over to it. I would like the GEAC to engage and interact with all those scientists, institutions and civil society groups who have submitted written representations to me. The GEAC should consult with scientists like Dr. M.S. Swaminathan, Dr. P.M. Bhargava, Dr. G. Padmanabhan, Dr M. Vijayan, Dr. Keshav Kranthi, Dr. Madhav Gadgil and others to draw up a fresh protocol for the specific tests that will have to be conducted in order to generate public confidence. Under no circumstances should there be any hurry or rush. The moratorium will continue for as long as it is needed to establish public trust and confidence. Meanwhile, I also intend to change the name of the GEAC from Genetic Engineering Approvals Committee to Genetic Engineering Appraisal Committee.
- Meanwhile, in order to ensure complete transparency and public accountability, I am making my decision on the GEAC recommendation regarding commercialisation of Bt-brinjal public right away.
[8]This review is to be published shortly in Current Science but an advance copy has been made available to me and it is included in Annex-IIIA to the electronic version of this note available at www.moef.nic.in
[9]Dr. S. Parasuraman, Director of the Tata Institute of Social Sciences, Mumbai has written to me saying that the questions he raised as member of EC-I were never answered.